6 research outputs found

    Deep learning for gait prediction: an application to exoskeletons for children with neurological disorders

    Get PDF
    Cerebral Palsy, a non-progressive neurological disorder, is a lifelong condition. While it has no cure, clinical intervention aims to minimise the impact of the disability on individuals' lives. Wearable robotic devices, like exoskeletons, have been rapidly advancing and proving to be effective in rehabilitating individuals with gait pathologies. The utilization of artificial intelligence (AI) algorithms in controlling exoskeletons, particularly at the supervisory level, has emerged as a valuable approach. These algorithms rely on input from onboard sensors to predict gait phase, user intention, or joint kinematics. Using AI to improve the control of robotic devices not only enhances human-robot interaction but also has the potential to improve user comfort and functional outcomes of rehabilitation, and reduce accidents and injuries. In this research study, a comprehensive systematic literature review is conducted, exploring the various applications of AI in lower-limb robotic control. This review focuses on methodological parameters such as sensor usage, training demographics, sample size, and types of models while identifying gaps in the existing literature. Building on the findings of the review, subsequent research leveraged the power of deep learning to predict gait trajectories for the application of rehabilitative exoskeleton control. This study addresses a gap in the existing literature by focusing on predicting pathological gait trajectories, which exhibit higher inter- and intra-subject variability compared to the gait of healthy individuals. The research focused on the gait of children with neurological disorders, particularly Cerebral Palsy, as they stand to benefit greatly from rehabilitative exoskeletons. State-of-the-art deep learning algorithms, including transformers, fully connected neural networks, convolutional neural networks, and long short-term memory networks, were implemented for gait trajectory prediction. This research presents findings on the performance of these models for short-term and long-term recursive predictions, the impact of varying input and output window sizes on prediction errors, the effect of adding variable levels of Gaussian noise, and the robustness of the models in predicting gait at speeds within and outside the speed range of the training set. Moreover, the research outlines a methodology for optimising the stability of long-term forecasts and provides a comparative analysis of gait trajectory forecasting for typically developing children and children with Cerebral Palsy. A novel approach to generating adaptive trajectories for children with Cerebral Palsy, which can serve as reference trajectories for position-controlled exoskeletons, is also presented

    Deep Learning Models for Stable Gait Prediction Applied to Exoskeleton Reference Trajectories for Children With Cerebral Palsy

    Get PDF
    Gait trajectory prediction models have several applications in exoskeleton control; they can be used as feed-forward input to low-level controllers and to generate reference/target trajectories for position-controlled exoskeletons. In our study, we implement four deep learning models (LSTM, FCN, CNN and Transformer) that perform one-step-ahead gait trajectory prediction after training on gait patterns of typically developing children. We propose a methodology that optimises for stability in long-term forecasts, and evaluate the performance of the models on typically developing (TD) and Cerebral Palsy (CP) gait during recursive prediction of 200 time-steps in the future (which may lead to propagation of errors) and in the presence of varying levels of Gaussian noise (1%-5%). Results on TD gait show that the FCN and Transformer, with mean absolute errors (MAEs) for one-step-ahead predictions between 1.17.-1.63., are the most suitable for the intended application. We also proposed an approach for generating adaptive trajectories that can be used as reference trajectories for position-controlled exoskeletons. Gait patterns from children with Cerebral Palsy were fed into gait trajectory prediction models trained on typically developing gait only, to generate corrective patterns. Preliminary results show that the gait patterns of typically developing children were introduced onto the generated trajectories

    Systematic Review of Intelligent Algorithms in Gait Analysis and Prediction for Lower Limb Robotic Systems

    Get PDF
    The rate of development of robotic technologies has been meteoric, as a result of compounded advancements in hardware and software. Amongst these robotic technologies are active exoskeletons and orthoses, used in the assistive and rehabilitative fields. Artificial intelligence techniques are increasingly being utilised in gait analysis and prediction. This review paper systematically explores the current use of intelligent algorithms in gait analysis for robotic control, specifically the control of active lower limb exoskeletons and orthoses. Two databases, IEEE and Scopus, were screened for papers published between 1989 to May 2020. 41 papers met the eligibility criteria and were included in this review. 66.7% of the identified studies used classification models for the classification of gait phases and locomotion modes. Meanwhile, 33.3% implemented regression models for the estimation/prediction of kinematic parameters such as joint angles and trajectories, and kinetic parameters such as moments and torques. Deep learning algorithms have been deployed in ∼15% of the machine learning implementations. Other methodological parameters were reviewed, such as the sensor selection and the sample sizes used for training the models

    Performance of Deep Learning Models in Forecasting Gait Trajectories of Children with Neurological Disorders

    Get PDF
    Forecasted gait trajectories of children could be used as feedforward input to control lower limb robotic devices, such as exoskeletons and actuated orthotic devices (e.g., Powered Ankle Foot Orthosis—PAFO). Several studies have forecasted healthy gait trajectories, but, to the best of our knowledge, none have forecasted gait trajectories of children with pathological gait yet. These exhibit higher inter- and intra-subject variability compared to typically developing gait of healthy subjects. Pathological trajectories represent the typical gait patterns that rehabilitative exoskeletons and actuated orthoses would target. In this study, we implemented two deep learning models, a Long-Term Short Memory (LSTM) and a Convolutional Neural Network (CNN), to forecast hip, knee, and ankle trajectories in terms of corresponding Euler angles in the pitch, roll, and yaw form for children with neurological disorders, up to 200 ms in the future. The deep learning models implemented in our study are trained on data (available online) from children with neurological disorders collected by Gillette Children’s Speciality Healthcare over the years 1994–2017. The children’s ages range from 4 to 19 years old and the majority of them had cerebral palsy (73%), while the rest were a combination of neurological, developmental, orthopaedic, and genetic disorders (27%). Data were recorded with a motion capture system (VICON) with a sampling frequency of 120 Hz while walking for 15 m. We investigated a total of 35 combinations of input and output time-frames, with window sizes for input vectors ranging from 50–1000 ms, and output vectors from 8.33–200 ms. Results show that LSTMs outperform CNNs, and the gap in performance becomes greater the larger the input and output window sizes are. The maximum difference between the Mean Absolute Errors (MAEs) of the CNN and LSTM networks was 0.91 degrees. Results also show that the input size has no significant influence on mean prediction errors when the output window is 50 ms or smaller. For output window sizes greater than 50 ms, the larger the input window, the lower the error. Overall, we obtained MAEs ranging from 0.095–2.531 degrees for the LSTM network, and from 0.129–2.840 degrees for the CNN. This study establishes the feasibility of forecasting pathological gait trajectories of children which could be integrated with exoskeleton control systems and experimentally explores the characteristics of such intelligent systems under varying input and output window time-frames

    Deep Learning Models for Stable Gait Prediction Applied to Exoskeleton Reference Trajectories for Children With Cerebral Palsy

    Get PDF
    Gait trajectory prediction models have several applications in exoskeleton control; they can be used as feed-forward input to low-level controllers and to generate reference/target trajectories for position-controlled exoskeletons. In our study, we implement four deep learning models (LSTM, FCN, CNN and Transformer) that perform one-step-ahead gait trajectory prediction after training on gait patterns of typically developing children. We propose a methodology that optimises for stability in long-term forecasts, and evaluate the performance of the models on typically developing (TD) and Cerebral Palsy (CP) gait during recursive prediction of 200 time-steps in the future (which may lead to propagation of errors) and in the presence of varying levels of Gaussian noise (1%-5%). Results on TD gait show that the FCN and Transformer, with mean absolute errors (MAEs) for one-step-ahead predictions between 1.17°−1.63°, are the most suitable for the intended application. We also proposed an approach for generating adaptive trajectories that can be used as reference trajectories for position-controlled exoskeletons. Gait patterns from children with Cerebral Palsy were fed into gait trajectory prediction models trained on typically developing gait only, to generate corrective patterns. Preliminary results show that the gait patterns of typically developing children were introduced onto the generated trajectories

    Effect of Gait Speed on Trajectory Prediction Using Deep Learning Models for Exoskeleton Applications

    Get PDF
    Gait speed is an important biomechanical determinant of gait patterns, with joint kinematics being influenced by it. This study aims to explore the effectiveness of fully connected neural networks (FCNNs), with a potential application for exoskeleton control, in predicting gait trajectories at varying speeds (specifically, hip, knee, and ankle angles in the sagittal plane for both limbs). This study is based on a dataset from 22 healthy adults walking at 28 different speeds ranging from 0.5 to 1.85 m/s. Four FCNNs (a generalised-speed model, a low-speed model, a high-speed model, and a low-high-speed model) are evaluated to assess their predictive performance on gait speeds included in the training speed range and on speeds that have been excluded from it. The evaluation involves short-term (one-step-ahead) predictions and long-term (200-time-step) recursive predictions. The results show that the performance of the low- and high-speed models, measured using the mean absolute error (MAE), decreased by approximately 43.7% to 90.7% when tested on the excluded speeds. Meanwhile, when tested on the excluded medium speeds, the performance of the low-high-speed model improved by 2.8% for short-term predictions and 9.8% for long-term predictions. These findings suggest that FCNNs are capable of interpolating to speeds within the maximum and minimum training speed ranges, even if not explicitly trained on those speeds. However, their predictive performance decreases for gaits at speeds beyond or below the maximum and minimum training speed ranges
    corecore